International Journal of Engineering, Science and Mathematics

Vol. 9Issue 10, October 2020,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

ON ε -PREOPEN SETS

Dr reema Bahan*Dr Ravindra Nath Pandey**

*Lecturer government women,s polytechnic,Patna

**Ex Prof. Department of Mathematics, Patna University

Abstract. In general topology, the word "preopen" plays a major role and hence, the concept of the "preopen compactness" has been developed. In this paper, the focal point is to establish few theorems based on ε -preopen compactness. There are also numerous associations with other forms of compactness. Furthermore, new axioms for separation are described.

Keywords : ε – preopen set, ε – preopen compact- ness.

Introduction

Throughout the article, (S, φ) represents a non-empty topological space in this text Space on which, unless otherwise stated, no separation axioms are presumed. The closure and interior of $\mathcal{M} \subset S$ are denoted by $Cl(\mathcal{M})$ and $Int(\mathcal{M})$ respectively. Monsef has presented essential concepts of pretopological concepts [16], while preopen concepts of theory can be examined in Andrijevic's concepts[17]. The concept of preopen sets was introduced and investigated by Mashhour et al. [15]. (S, φ) is called s -closed, if every semi-open cover has a finite subfamily the semi-closures of whose members cover S.A subset \mathcal{M} of topological space (S, φ) is said to be preopen [15] if $\mathcal{M} \subset Int(Cl(\mathcal{M}))$ holds. We denote by $PO(S, \varphi)$ (sometimes, PO(X)) the set of all preopen sets in (S, φ) [16]. The complement of a preopen set is called preclosed. The intersection of all preclosed sets of (S, φ) containing a subset \mathcal{M} is called the preclosure of \mathcal{M} and is denoted by $pCl(\mathcal{M})$ [5]. The union of all preopen sets contained in a subset \mathcal{M} is called the preinterior of \mathcal{M} and is denoted by $pInt(\mathcal{M})$. The set $pCl(\mathcal{M})$ is preclosed and $pInt(\mathcal{M})$ is preopen in (S, φ) for any subset \mathcal{M} of (S, φ) , because an arbitrary union of preopen sets of (S, φ) is preopen [1]. It is well known that [2, Theorem 1.5 (e)(f)] $pCl(\mathcal{M}) = \mathcal{M} \cup$ $Cl(Int(\mathcal{M}))$ and $pInt(\mathcal{M}) = \mathcal{M} \cap Int(Cl(\mathcal{M}))$ hold for any subset \mathcal{M} of (S, φ) . We note that $\tau \subset PO(S,\tau)$ for any topological space (S, φ) and $PO(S,\tau)$ is not a topology on S in general. Also, A function $f: (X,\tau) \to (Y,\sigma)$ is said to be completely **irresolute** [10] if $f^{-1}(V)$ is regular open in (S,τ) for every semi-open set V in Y.

Preliminaries and Main Results

Definition 1. A space (S, φ) is ε –po-compact if every ε –po-cover (a cover consisting of ε –po- sets) of S has a finite subcover.

Equivalently, (\mathcal{S} , φ) is ε -po-compact if every ε -po-cover of \mathcal{S} has a finite subcover. A submaximal space is an example of a ε -po-compact space. The proof of the following result follows from the fact that every open set is a ε -po set.

Theorem 1. If (S, φ) is a ε -po-compact space, then it is s -closed.

Proof. Let $\mathcal{M} = \{\mathcal{M}_{\alpha} : \alpha \in \Delta\}$ be a semi-open cover of S. Then \mathcal{M} is a ε -po-cover of S. Since S is ε -po-compact, it has a finite subcover such that $S \subseteq \bigcup_{i=1}^n \mathcal{M}_{\alpha i}$. But $\bigcup_{i=1}^n \mathcal{M}_{\alpha i} \subseteq \bigcup_{i=1}^n scl(\mathcal{M}_{\alpha i})$, so S is S-closed.

Since ans -closed space is S -closed, a ε -po-compact space is s -closed.

Theorem 2.If a map $f: (S, \varphi) \to (Y, \sigma)$ is ε -po-irresolute (resp., ε -po-continuous) surjective and K is ε -po-compact subset of S, then f(K) is ε -po-compact (resp, QHC) in Y.

Proof. Let $\mathcal{M} = \{\mathcal{M}_{\alpha} : \alpha \in \Delta\}$ be any ε –po- (open) cover of f(K). Since f is ε –poirresolute (resp, ε -po-continuous), $\mathcal{M} * = \{f^{-1}(\mathcal{M}_{\alpha}) : \alpha \in \Delta\}$ is ε –po-cover of Kwhere K is ε –po-compact. Thus it has a finite subcover. That is $\mathbf{S} \subseteq \bigcup_{i=1}^n f^{-1}(\mathcal{M}_{\alpha i})$.

Since, f is ε –po-irresolute (ε -po-continuous) and surjective, we have $f(K) \subseteq \bigcup_{i=1}^n f(f^{-1}(\mathcal{M}_{\alpha i})) \subseteq \bigcup_{i=1}^n (\mathcal{M}_{\alpha i})$ (resp., $f(K) \subseteq \bigcup_{i=1}^n (\mathcal{M}_{\alpha i}) \subseteq \bigcup_{i=1}^n cl(\mathcal{M}_{\alpha i})$). Thus f(K) is ε –po-compact (resp., QHC) in Y.

Definition 2. A space (S, φ) is strongly s –compact if for every ε –po-cover $\mathcal{M} = \{\mathcal{M}_{\alpha} : \alpha \in \Delta\}$, there exist $\mathcal{M}_{\alpha 1}, \mathcal{M}_{\alpha 2}, ..., \mathcal{M}_{\alpha n} \in \mathcal{M}$ such that $S \subseteq \bigcup_{i=1}^{n} cl(\mathcal{M}_{\alpha i})$.

If (S, φ) is ε -po-compact, then clearly it is strongly ε -po-compact, since $\mathcal{M}_{\alpha i} \subseteq \bigcup_{i=1}^{n} cl(\mathcal{M}_{\alpha i})$ for every $\mathcal{M}_{\alpha i} \subseteq S$, i = 1, 2, ..., n.

Definition 3. A space (S, φ) is strongly $O-\varepsilon$ -po-regular if S has a ε -po-cover $\mathcal{M} = \{\mathcal{M}_{\alpha} : \alpha \in \Delta\}$ for all $x \in S$, and for all $\mathcal{M}_{\alpha}(x) \in \mathcal{M}$ such that $x \in \mathcal{M}_{\alpha}(x)$, there is an existence of $\mathcal{D}_x \in \varepsilon - po(S)$ such that $x \in \mathcal{D}_x \subseteq cl(\mathcal{D}_x) \subseteq \mathcal{M}_{\alpha}(x)$.

Theorem 3.If (S, φ) is strongly ε -po-compact and strongly $O-\varepsilon$ -po-regular, then it is ε -po-compact.

Proof. Let $\mathcal{M} = \{\mathcal{M}_{\alpha} : \alpha \in \Delta\}$ be a ε -po-cover of S. Then since S is strongly $O-\varepsilon$ -po-regular, for all $x \in S$, there is an existence of $\mathcal{M}_{\alpha}(x) \in \mathcal{M}$ such that $x \in \mathcal{M}_{\alpha}(x)$ and there is an existence of $\mathcal{O}_x \in \varepsilon$ -po(S) with $x \in \mathcal{O}_x \subseteq cl(\mathcal{O}_x) \subseteq \mathcal{M}_{\alpha}(x)$. Thus $\{\mathcal{O}_x : x \in S\}$ is a ε -po-cover of S. Since S is strongly ε -po-compact, there exist \mathcal{O}_{x2} , \mathcal{O}_{x2} , ..., \mathcal{O}_{xn} such that $S \subseteq \bigcup_{i=1}^n cl(\mathcal{O}_{xi}) \subseteq \mathcal{M}_{\alpha i}(x)$. Therefore S is ε -po-compact.

Corollary 1.If (S, φ) is strongly $O - \varepsilon$ —po-regular, then it is strongly ε —po-compact if and only if it is ε —po-compact.

Definition 4. A space (S, φ) is ε -po-regular if for every ε -po-cover $\mathcal{M} = \{\mathcal{M}_{\alpha} : \alpha \in \Delta\}$ of S and for every $x \in \mathcal{M}_{\alpha}(x) \in \mathcal{M}$, there is an existence of a preopen set \mathscr{D}_{α} such that $x \in \mathscr{D}_{\alpha} \subseteq \mathcal{M}_{\alpha}$.

Theorem 5. If (S, τ) is a ε -po-regular and a strongly compact space, then it is ε -po-compact.

Proof. Let $\mathcal{M} = \{\mathcal{M}_{\alpha} : \alpha \in \Delta\}$ be a ε -po-cover of S. Then since S is ε -poregular, for all $x \in \mathcal{M}_{\alpha}(x)$ there is an existence of $\wp \in po(S)$ such that $x \in \wp_{\alpha} \subseteq$

 \mathcal{M}_{α} for all $\alpha \in \Delta$ and so $\{\wp_{\alpha} : \alpha \in \Delta\}$ is a preopen cover of S. Since S is strongly compact, then $S \subseteq \bigcup_{i=1}^{n} \wp_{\alpha i} \subseteq \bigcup_{i=1}^{n} \mathcal{M}_{\alpha i}$. Therefore S is ε -po-compact.

The converse of the preceding Theorem need not be true since a pre- open set need not be a ε -po- set. Moreover, it is clear that the notions of ε -po-regular and ε -po-irresolvable spaces are independent. The proof of the following result follows immediately from Theorem 8 and Theorem 9.

Corollary 2. If a space (S, φ) is ε –po-regular and ε –po-irresolvable, then it is ε –po-compact if and only if it is strongly compact.

Definition 5. A space (S, φ) is o-regular if for every ε -po-cover $\mathcal{M} = \{\mathcal{M}_{\alpha i} : \alpha \in \Delta\}$ of S and for every $x \in \mathcal{M}_{\alpha}(x) \in \mathcal{M}$, there is an existence of an open set \mathscr{D} , such that $x \in \mathscr{D}_x \subseteq cl(\mathscr{D}_x) \in \mathcal{M}_{\alpha}(x)$.

Theorem 6. If (S, τ) is o-regular, then it is ε –po-compact if and only if it is QHC.

Proof. Let (S, φ) be ε -po-compact. By Theorem 7, (S, φ) is a compact space, so it is QHC -space.

Conversely, let $\mathcal{M} = \{\mathcal{M}_{\alpha} : \alpha \in \Delta\}$ be a ε -po-cover of S. Since S is o-regular, for every $x \in \mathcal{M}_{\alpha}(x) \in \mathcal{M}$, there is an existence of an open set U such that $x \in \mathcal{D}_x \subseteq cl(\mathcal{D}_x) \subseteq \mathcal{M}_{\alpha}(x)$. Thus $\{\mathcal{D}\alpha : \alpha \in \Delta\}$ is an open cover of S. Since S is QHC, there is an existence of a finite family such that $S \in \bigcup_{i=1}^n cl(\mathcal{D}_{xi}) \subseteq \bigcup_{i=1}^n \mathcal{M}_{\alpha i}$. Hence (X, φ) is ε -po-compact.

Corollary 3.If (S, φ) is o-regular, then it is ε -po-compact if and only if it is S -closed (S -closed, compact, nearly compact).

Proof : Clearly s —closed (S —closed, compact, nearly compact) imply QHC and by Theorem 10, QHC imply ε —po-compact.

Conversely, if (S, τ) is ε —po-compact, then by Theorem 7 it is compact and so it is nearly compact and by Theorem 12, it is s —closed. Thus it is S —closed.

Theorem 7. If (S, τ) is o –regular, then it is QHC if and only if it is strongly ε –pocompact.

Proof. Let $\mathcal{M} = \{\mathcal{M}_{\alpha} : \alpha \in \Delta\}$ be a ε -po-cover of S. Since S is o- regular, for each and every $x \in \mathcal{M}_{\alpha}(x) \in \mathcal{M}$ there is an existence of an open set \mathscr{D} such that $x \in \mathscr{D}_{x} \subseteq cl(\mathscr{D}_{x}) \subseteq \mathcal{M}_{\alpha}(x)$. So $\{\mathscr{D}_{\alpha} : \alpha \in \Delta\}$ is an open cover of S. Since S is QHC, $S \subseteq \bigcup_{i=1}^{n} cl(\mathscr{D}_{x}) \subseteq \bigcup_{i=1}^{n} \mathcal{M}_{\alpha i}(x)$. Since $\bigcup_{i=1}^{n} \mathcal{M}_{\alpha i} \subseteq \bigcup_{i=1}^{n} \mathcal{M}_{\alpha i}$ for every $\mathcal{M}_{\alpha i} \subseteq S$, i = 1, 2, ..., n. S is strongly ε -po-compact. Conversely, let $\mathcal{M} = \{\mathcal{M}_{\alpha} : \alpha \in \Delta\}$ be an open cover of S. Then \mathcal{M} is a ε -po-cover of S and since S is strongly ε -po-compact, $S \subseteq \bigcup_{i=1}^{n} cl(\mathcal{M}_{\alpha i}(x))$. Thus S is QHC.

Separation axioms via ε –po-sets

In this section, several new separation axioms via ε —po- sets are introduced. Connections to other well-known ones are also discussed.

Definition 6. Let (S, φ) be a topological space. Then

- (i) (S, φ) is called a T_{p0} space if for each pair of distinct points $x, y \in S$, there is either a ε –po- set containing x but not y or a ε –po- set containing y but not x.
- (ii) (S, φ) is called a T_{p1} space if for each pair of distinct points $x, y \in S$, there is a ε –po-set containing x but not y, and a ε –poset containing y but not x.
- (iii) (S, φ) is called a T_{p2} space if for each pair of distinct points x, $y \in S$, there exist ε –po- sets \varnothing and V such that $x \in \varnothing$, $y \in V$ and $\varnothing \cap V = \varphi$.
- (iv) (\mathcal{S}, φ) is called a weak regular space if for each closed subset $F \subset \mathcal{S}$ and each point x does not belongs to F, there exist ε —posets \wp and V such that $x \in \wp$, $F \subset V$ and $\wp \cap V = \varphi$. A weak regular T_{v1} Space is called T_{v3} space.
- (v) (\mathcal{S}, φ) is called a weak normal space if for each pair of disjoint closed subsets F_1 and F_2 of \mathcal{S} there exist ε —po sets \varnothing and V such that $F_1 \subset \varnothing$, $F_2 \subset V$ and $\varnothing \cap V = \varphi$. A weak normal T_{p1} —

Space is called a T_{p4} – space.

It is clear that the T_{p2} condition implies the T_{p1} condition, which in turn implies the T_{p0} condition. Since the notions of open set and ε —po set are independent, weak regularity and regularity are also independent notions.

Theorem 12. If each point $x \in \mathcal{S}$ is a ε -po set, then the space (\mathcal{S}, φ) is a T_{p1} -Space. Proof. Let each point of \mathcal{S} be a ε -po subset of \mathcal{S} . If $|\mathcal{S}| = 1$, the result is clear. Thus let x and y be distinct points of \mathcal{S} . Then $\{y\}$ is a ε -po set, so $\mathcal{S}\setminus\{y\}$ is a ε -po set containing x but not y. It follows that (\mathcal{S}, φ) is a T_{p1} -Space.

References

- [1] Abo-Khadra, A., On Generalized Forms of Compactness, Masters The- sis, Tanta University (Egypt, 1989).
- [2] Al-Hawary, Talal, Generalized Preopen Sets, Questions Answers Gen. Topology 29 (1), pp. 73-80, (2011).
- [3] Andrijevi'c, D., Semi—preopen sets, Mat. Vesnik. 38, pp. 24-32, (1986).
- [4] Dontchev, J. and Helsinki, J., Between A- and B sets, Acta Math. Hung. 69(1-2), pp. 111-122, (1998).
- [5] Dontchev, J., Ganster, M.andNoiri, T., On P-closed Spaces, Inter. J. Math. Math. Sci. 24 (3), pp. 203-212, (1998).
- [6] Foran, J. and Liebnitz, P., A Characterization of Almost Resolvable Spaces, Rand Circ. Mat. Palermo (2), pp. 136-141, (1991).
- [7] Ganster, M. and Reilly, I.L.., A Decomposition of Continuity, Acta Math. Hungar, 56, no 3-4, pp. 299-301, (1990).
- [8] Jankovic, D., Reilly, I.L. and Vamanamurthy M., On Strongly Compact Topological Spaces, Acta Math. Hung., pp. 29-40, (1988).

- [9] Levine, N., Generalized Closed sets in Topology, Rend. Circ. Mat. Palermo (2) 19, pp. 89-96, (1970).
- [10] Mashhour, A. S., Abd EL-Monsef, M. E. and ElDeep, S. N., On Precontinuous and Weak Pre-continuous Mappings, Proc. Math. and Phys. Soc. Egypt, 53, pp. 47-53, (1982).
- [11] Mashhour, A. S., Abd EL-Monsef, M. E. and ElDeep, S. N., α -continuous and α -open Mappings, Acta Math. Hung., 3, pp. 213-218, (1982).
- [12] Mashhour, A. S., Abd EL-Monsef, M. E., Hasainen, I. A. and Noiri, T., Strongly Compact Spaces, Delta J. Sci, pp. 30-46, (1984).
- [13] Mathur, A. and Singal, M. K., On Nearly-Compact Spaces, Boll. Un. Mat. Ital., pp. 702-710, (1969).
- [14] Reilly, I. L. and Vamanamurthy, M., On α -continuity in Topological Spaces, J. Indian Acad. Math., 18, pp. 89-99, (1996).
- [15] Mashhour, A. S., Abd El-Monsef M. E. and El-Deeb S. N., On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53.
- [16] M.E. Abd El-Monsef, Studies on some pretopological concepts, Ph.D.Thesis, Fac. Sci. Tanta University, Egypt, (1980).
- [17] D. Andrijevi'c, Semi-preopen sets, Mat. Vesnik, 38 (1986), 24-32